Notações e definições
As linhas horizontais da matriz são chamadas de linhas e as linhas verticais são chamadas de colunas. Uma matriz com m linhas e n colunas é chamada de uma matriz m por n (escreve-se m×n) e m e n são chamadas de suas dimensões, tipo ou ordem.Um elemento de uma matriz A que está na i-ésima linha e na j-ésima coluna é chamado de elemento i,j ou (i,j)-ésimo elemento de A. Ele é escrito como ai,j ou a[i,j].
Uma matriz onde uma de suas dimensões é igual a 1 é geralmente chamada de vetor. Uma matriz 1 × n (uma linha e n colunas) é chamada de vetor linha ou matriz linha, e uma matriz m × 1(uma coluna e m linhas) é chamada de vetor coluna ou matriz coluna.
Nas linguagens de programação, os elementos da matriz podem estar indexados a partir de 1 (Fortran, MATLAB, R (linguagem de programação), etc) ou a partir de 0 (C (linguagem de programação) e seus dialetos). Por exemplo, o elemento a(1,1) em Fortran corresponde ao elemento a[0][0] em C.
Exemplos
A matriz a seguir é uma matriz de ordem 2×3 com elementos naturais
Nesse exemplo, o elemento a1 2 é 2, o número na primeira linha e segunda coluna do quadro.

As entradas (símbolos) de uma matriz também podem ser definidas de acordo com seus índices i e j. Por exemplo, aij = i + j, para i de 1 a 3 e j de 1 a 2, define a matriz 3x2
.Algumas definições
A transposta de uma matriz Am × n é a matriz Atn × m em que
, ou seja, todos os elementos da primeira linha, tornar-se-ão elementos da primeira coluna, todos os elementos da segunda linha, tornar-se-ão elementos da segunda coluna, todos os elementos da n linha, tornar-se-ão elementos da m coluna. Exemplo: 
Uma matriz é dita quadrada se tem o mesmo número de linhas e colunas, ou seja, quando podemos dizer que, m tem a mesma quantidade de elementos que n. Numa matriz quadrada A de ordem n × n, chama-se de diagonal principal os elementos aij onde i = j, para i de 1 a n.
A matriz identidade In é a matriz quadrada n × n que tem todos os membros da diagonal principal iguais a 1 e 0 nas outras posições. Exemplo:
.A única matriz identidade que não contém zero é a matriz identidade de ordem 1:

Uma matriz A é simétrica se A = At. Isso só ocorre com matrizes quadradas.
Operações envolvendo matrizes
Não se define adição ou subtração de um número com uma matriz, e nem divisões envolvendo matrizes.Multiplicação por um escalar
A multiplicação é uma das operações mais simples que podem ser feitas com matrizes. Para multiplicar um número k qualquer por uma matriz n×m A, basta multiplicar cada entrada aij de A por k. Assim, a matriz resultante B será também n×m e bij = k.aij. Com isso, pode-se pensar também na noção de dividir uma matriz por um número: basta multiplicá-la pelo inverso desse número. Mas essa noção pode ser perigosa: enquanto a multiplicação entre um número e uma matriz pode ser dita "comutativa", o mesmo não vale para a divisão, pois não se pode dividir um número por uma matriz.Por exemplo:

Adição e subtração entre matrizes
Por exemplo:
Lembre-se: Você só pode fazer isso com Matriz negativa, onde recebe o sinal negativo, por exemplo: em -A+B, o A que poderá ser reescrito.
Multiplicação de matrizes
Multiplicação de duas matrizes é bem definida apenas se o número de colunas da matriz da esquerda é o mesmo número de linhas da matriz da direita. Se A é uma matriz m por n e B é uma matriz n por p, então seu produto AB é a matriz m por p (m linhas e p colunas) dada por:Por exemplo:
z A e B m×n e matriz C k×m ("distribuição à esquerda").
É importante notar que a comutatividade não é geralmente garantida; isto é, dados as matrizes A e B com seu produto definido, então geralmente AB ≠ BA.
Algoritmo para a multiplicação de uma matriz A por uma matriz B, sendo o resultado gravado numa matriz C:
Para (i=0; iPara (j=0; j C[i][j]=0; Para (x=0; x C[i][j]+=A[i][x]*B[x][j]; } } }
Propriedades
Determinante
O determinante é uma propriedade matricial útil na resolução de sistema de equações lineares (que sempre podem ser representados através de matrizes), além de outras aplicações matemáticas.Característica
A característica de uma matriz é um inteiro não negativo que representa o número máximo de linhas (ou colunas) da matriz que são linearmente independentes.[1] De acordo com o teorema de Kronecker, temos que a característica de uma matriz B é c se e somente se:- Existe pelo menos uma submatriz c*c cujo determinante é diferente de zero.
- Toda submatriz quadrada de ordem superior a c tem determinante zero.
Se c for não nulo, então c é o maior inteiro não-negativo tal que B possui pelo menos uma submatriz c * c com determinante diferente de zero. De acordo com a definição,
![]() |
![]() |

![(AB)[i,j] = A[i,1] B[1,j] + A[i,2] B[2,j] + ... + A[i,n] B[n,j] \,\!](http://upload.wikimedia.org/math/7/a/4/7a424a2f2bfee1127fbfc48750aa5132.png)




Nenhum comentário:
Postar um comentário